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LETTER TO THE EDITOR 

Quenching of the quantum Hall effect in a uniform ballistic 
quantum wire 

D P Chut and P N Butcher 
Departmenl of Physics, Universily of Watwick. Coventry CV4 7AL. UK 

Received 28 May 1993 

Abstract. Self-consistent calculations are made of wave functions and two kinds of Hall 
resistance for a 2DEG confined in a uniform ballistic quantum wire in a we& perpendicular 
magnetic field when several subbands ate occupied. We find intennitlent quenchiog of the 
Hall resistance associated with the local chemical potential as lhe electron density varies. The 
quenching is due to the overlap of opposite-going wave functions in the same subband, which 
is enhanced significmtly by the singulxily of the density of states at the subbond minimum as 
well as by Coulomb interactions between elechons. 

In the last decade, magnetotransport in semiconductor microstructures has been 
intensively investigated and many interesting phenomena have been observed [l]. Recently, 
particular attention has been given to the behaviour in weak magnetic fields, e.g. quenching 
of the quantum Hall resistance (QHR) [2-51, the last Hall plateau [2-51, and the bend 
resistance in a four-terminal case [ 6 4 ] .  Much theoretical effort has been devoted to 
understanding these phenomena. Microscopic calculations of a quasi-one-dimensional (QID) 
electron gas model which ignored the significance of the density of states and Coulomb 
interaction effects in the weal-coupling limit failed to show quenching [9, IO]. Self- 
consistent calculations of the QHR associated with the electrostatic potential gave only a 
linear dependence on magnetic field as in the classical case [ 111. In the strong coupling 
regime, quenching of the QHR has been obtained theoretically when there txe resonant 
states involved [12, 131. Other investigations suggest that quenching is due to a geometrical 
property of the structure and is not intrinsic to the QlD limit even with strongly coupled 
probes [14]. They also demonstrate that smoothing the corners of the structure suppresses 
the QHR [ 151. Assuming a realistic confining potential with soft boundaries provides a 
detailed explanation of many experimental results via classical trajectories [16]. However, 
very recent experimental results show that there is quenching of the QHR of a quantum wire 
in the weak-coupling limit [17]. 

In this letter we present self-consistent calculations of the QHR R ~ c p  associated with 
the local chemical potential (LCP) in a uniform ballistic wire. The following specific results 
are obtained (1) quenching of R ~ c p  is intrinsic in the weak coupling limit, (2) it is due to 
the overlap of opposite-going wave functions, (3) quenching happens intermittently as the 
electron density increases. and (4) the QHR associated with the electrostatic Hall potential 
(EHP) is closely linear in the magnetic field B in spite of subband depopulation effects. 

t On leave from the Institute of Physics, Chinese Academy of Sciences, Beijing 100080, People's Republic of 
China. 
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Before we go into detail, let us first distinguish two kinds of intrinsic Hall resistance in 
a quantum wire. One is REHP,  defined as the EHP difference between the two edges of a wire 
divided by the total current passing through the two terminals. The other, R ~ c p ,  is obtained 
by using the LCP difference across the wire instead of the EHP. The EHP is the potential 
induced by the electrons in the wire to balance the Lorentz force, while the LCP is defined 
as the chemical potential of a reservoir which is connected non-invasively at a particular 
point in the wrire when no net current flows through the contact. We believe that the 
potential difference measured by conventional weak-coupling current-stopping procedures 
(as discussed by Engquist and Anderson [I81 and Landauer [19]) is the LCP difference. We 
show in the following that it is R K ~  which is quenched in a weak magnetic field. REHP 
retains the linear dependence on magnetic field which occurs in classical theory. 

The system to be considered is a 2DEG with electron density n, confined in a space of 
width W in the x-y plane by infinite potential barriers at y = i W / 2 .  A uniform magnetic 
field B is applied in the z direction and described in the Landau gauge by writing the vector 
potential as A = (-By, 0,O). Following previous authors [ZO, 1 I] and a recent paper by the 
present authors [21], we introduce an EHP V(y) which is induced by the external magnetic 
field. The electron wave function $n(x, y) satisfies the Schrainger equation 

[ (1 /2m*)  (P + e 4 '  + (-e)VCV)] Qn(x7 Y) = En&&. Y) 

where m* is the effective mass and n is the index of the subbands (n = 0,1,2, . . . refers to 
the lowest, the second, the thiid, . . . subbands). ?he normalized eigenfunctions are then of 
the form $ " ( x ,  y) = L;"*exp(ik,x)x.,k,(y), where L, is the length of the wire. The EHP, 
which must be determined self-consistently, can be expressed as 

The redistribution of the electron charge density Su(y) is 

where kzkF+A/2 and k--X,Ep-A12 (") are the Fermi wave numbers of subband n for the positive 
and the negative x directions respectively, A is the chemical potential difference between 
the two terminals, and U is the spin label. We make A small enough to ensure that we stay in 
the linear transport regime. The functions xiyl,(y) are the eigenfunctions of the Schrodinger 
equation in the absence of a magnetic field 17.0, I I]. To complete the calculation, we need 
to constrain E F  in the Fermi wave numbers so as to yield the given electron density n, for 
fixed A, i.e. 

The current density distribution across the wire can then be calculated from 
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where 1~ = (h /eE) ' /Z  is the magnetic length. Since the total current is I, = J d y  j x ( y ) ,  
the longitudinal resistance Rr can also be calculated straightforwardly. The LCP U(?) may 
also be calculated from the formula [22,23] 

Lo [PI lXn,k,.s+a,z (Y) 1' + PZ lXn.k-,Er.a,r (Y) IZl/U, 

Cn,o[lXn,k, s+n,z(Y)I' + IXn.ii~,.L,~,,,(Y)l~l/Un e U ( y )  = 

where PI ( ~ 2 )  is the chemical potential of the reservoir connected at the lefi (right) end 
of the wire, X n . k , , ( y )  and Xn,k-s,r (y)  are the right- and left-going electron wave functions 
respectively, and U, is the velocity at Fermi level. We notice that there is a difference 
between the formula of local chemical potential given above and the formula used in [9 ]  
and [IO] where the factor U;' for the density of states at Fermi level is not included. This 
difference is the primary reason why there is no quenching in their results. 

When the above equations are solved we obtain self-consistent electron wave functions, 
the distributions of the EHP and the LCP across the wire and two kinds of intrinsic Hall 
resistance, R E H P  and RLCP. To interpret the physics revealed in the results it is useful 
to have representations of the electron distributions in the subband wave functions. We 
therefore define a convenient mean position (y,) and a half-width ((Ay,Z))l/z in subband n 
and cross hatch the region lying between ( y n )  - and (y")  + ((Ay;))'/z to indicate 
the spread of wave functions. We take (yn) = (nlyln) and ((Ay:)) = (nly'ln) - (y")'. 
However, when n z 0, in evaluating ( y n )  and ((Ay;)) we keep only the renormalized part 
of the wave function lying between a side wall and the node closest to it. This procedure 
has the merit of producing useful pictorial representations of the electron distributions in the 
excited subband wave functions while avoiding unhelpful complications due to the nodes, 
and gives a better description of the behaviour of the electron wave functions near the 
edges, which is what determines RLcP.  In our numerical calculations, we always use the 
parameters of a GaAs wire [ I l l  of width w = 100 nm and we ignore the Zeeman splitting 
which is a reasonable first approximation in a model calculation for a GaAs system. 

Figure I(a) shows plots against E which indicate the degree of overlap of the oppositely 
propagating wave functions in the ground subband when n, = 2 x l O I 4  m-'. For this 
electron density only the ground subband is occupied. In this case. the formula for the 
LCP becomes very simple and the density-of-states factor cancels out. The departure of the 
QHR from its quantized value is. therefore, entirely due to the overlap of opposite-going 
wave functions. Data for (yo) and the wave function spread are given by the up (down) 
triangles and the cross-hatch lines sloping down to the right (left) for right (left)-going wave 
functions respectively. Figure l(b) gives data for RI. (crosses), R E H ~  (squares), and RLCF 
(circles) for the same value of n,y. We see that RLCP increases rapidly as the opposite-going 
wave functions begin to separate and remains at the quantized value when they are well 
separated at the two edges of the wire. 

m-'. For this density 
two subbands are occupied when B e 0.5 T but only the ground subband is occupied when 
E z 0.5 T. We chose this n, to make the Fermi wave number of the uppermost occupied 
subband much smaller than the others when E -+ 0 so that the Fermi level is very close to 
the bottom of this subband, which is Rat. Consequently, the closer the Fermi level is to the 
bottom of a subband the larger is the density of states of that subband at the Fermi level. 
In this situation, the LCP difference between the two edges of the wire is greatly reduced 
by both the large overlap of the opposite-going wave functions at low B and the significant 
increase of the density of states of the uppermost occupied subband. Figures I(c) and (d) 
show the degree of overlap in the n = 0 and n = 1 subbands respectively. Figure I(e) 

Figures l(c)-(e) show corresponding plots when n,? = 4 x 
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Figure 1. Plots showing overlap of the opposite-going wave functions in different subbands as a 
function of B and the corresponding RL (crosses) and Hall resistmces R a w  (squares) and REP 
(circles). Up (down) triangles refer to the avenge position of righl- (left.) going wave functions 
and the cross-hatch lines sloping down to the right (left) mark the corresponding wave-function 
spread. The width of the wire is W = 100 nm and the electron densities are ns = 2 x IO" n r Z  
in (a) and (b) and n, = 4 x IO" m-' in (c). (d), and (e). The broken lines show lhe classical 
Hall resistances. 

shows that REP is quenched when E c 0.5 T and figures I(c) and (d) confirm that the 
quenching is associated with severe overlap of the n = 1 wave functions, while the n = 0 
wave functions are separating as they did in figure l(a). The broken lines in figures l(b) 
and (e) show the behaviour of the classical Hall resistance. As soon as the second subband 
is depopulated, RLCP jumps to the quantized value because the opposite-going n = 0 wave 
functions are separated at the two edges. 

We see that the LCP at a wire edge is determined by the values there of the opposite- 
going electron wave functions of all of the occupied subbands. Increasing the overlap at 
the edges decreases the LCP difference between the edges. The singularity of density of 
states at the bottom of a subband enhances this effect enormously. In the limit, B -+ 0, the 
left- and right-going wave functions coincide and the LCP difference across the wire is zero. 
For small E, there will consequently be almost complete quenching of REP because the 
opposite-going wave functions of all the occupied subbands overlap heavily at the edges. 
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When the opposite-going wave functions of any one subband are separated, the level of 
quenching of RLQ is reduced. Finally, when every pair of opposite-going wave functions 
is well separated, the LCP difference approaches the chemical potential difference between 
the two ends of wire and the R ~ c p  is almost exactly quantized. 

We always suppose in the calculations described above that n,r is fixed. Consequently, 
when only the ground subband is occupied, the corresponding Fermi wave number kp, is 
also fixed. In that case, increasing B from zero simply separates the wave functions. On 
the other hand, when two subbands are occupied, increasing B increases kF, but reduces 
the Fermi wave number k ~ ,  in the second subband. For n,r = 4 x lot4 m-*, kF, (< kp,. 
Hence, when B is increased the n = 0 wave functions separate quickly but the n = 1 wave 
functions do not, with the result that R L C ~  is quenched. 
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Figure Z Plots showing the dependence on n, ofthe opposite-going W ~ Y B  functions in different 
subbands a d  lhe corresponding Hall resistances. The widlh ofthe wire and the notation are the 
same as in figure 1: B = 0.1 Tin  (a)-(d) and 0.5 T in (e)-(h). 

The behaviour when B is fixed and n, is changed is also interesting. Results are shown 
in figure 2 for B = 0.1 T and B = 0.5 T in figures 2(a)-(d) and (e)-(h) respectively. When 
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B = 0.1 T the opposite-going wave functions of every occupied subband overlap heavily 
as shown in figures 2(a)-(c). Consequently, in figure 2(d) RLcp is always small. When 
B = 0.5 T w e  see from figures ?.(e)-@ that the overlap between the opposite-going wave 
functions in each occupied subband is reduced, and the wave functions sepwnte as n,? (and 
consequently k ~ . )  increases. Consequently, RLCp in figure 2(h) increases quickly with n, as 
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Figure 3. Plots showing REW (squwes), REP (circles). and RL (crosses) YOTSUS B for 
n, = IO" r K 2  x 1.0 (a). 3.0 (b). 4.5 (c), 9.5 (d), 10.8 (e). and 19.8 (0. The width of 
the wire and the notation xe the same as in figure ( I ) .  The broken lines show the classical Hall 
resistance. 

We see from figure 2 that R ~ c p  is quenched intermittently as n, varies. This effect 
has been seen experimentally [SI and theoretically in the strong-coupling case [13]. To 
investigate it in more detail we show in figure 3 plots of the various Hall resistances against 
B for several different values of n,. The graphical notation is the same as in figures 1 and 
2. In figure 3(a) n, = 1.0 x lOI4  m-'. Only the ground subband is occupied and kFo is 
large enough to prevent overlap so that there is no quenching. This is also true in figure 
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3(b) for which n,? = 3.0 x IOl4 m-*. But, because kF, is now larger, Rwp increases more 
rapidly towards h/2ez. In figure 3(c) n, = 4.5 x I O i 4  w2. Only the ground subband is 
occupied when B > 0.7 T but n,? is now large enough for the n = 1 subband to be occupied 
as well when B < 0.7 T. We see that quenching sets in in this regime because kF, is small 
and the wave functions in the n = 1 subband overlap. In figure 3(d) we have increased n,? 
to 9.5 x I O r 4  m-* to ensure that both subbands remain occupied for all B and both XFo and 
kF, are large enough to prevent significant overlap. Consequently, REP is not quenched. 
In figure 3(e) nI = 10.8 x 10l4 m-2 and three subbands are occupied when B < 0.5 T. As 
would be expected, the quenching behaviour is similar to that shown in figure 2(c). Finally, 
in figure 3(0, we have increased n, to 19.8 x lOI4 m-* so that all three subbands remain 
occupied for all B with relatively large Fermi wave numbers. The situation is similar to 
that shown in figure 3(d) and quenching is suppressed. 

In summary, we find intermittent quenching of the QHR in a uniform ballistic quantum 
wire as n6 varies. The quenching is intrinsic and produced by overlap near the edges of the 
wire of opposite-going wave functions in the same excired subband. The overlap is strong 
at low B when n,>, has a value which yields a small Fermi wave number in the uppermost 
occupied subband. The singularity of the density of states at the bottom of the subband 
greatly enhances this effect. No quenching is found when the singularity is omitted from 
the LCP formula [9, IO]. The calculations presented here are self-consistent. We find that 
both the intra- and inter-subband couplings produced by the Coulomb interaction play a 
part in determining the quenching behaviour of the QHR. Calculations which do not include 
Coulomb interaction show less overlap, weaker quenching, and reduced widths of the ranges 
of n, in which quenching occurs. 

The uniform quantum wire has a geometry which is simple enough to allow self- 
consistent calculations to be carried out relatively easily. However, measurements of the 
QHR of a wire are difficult because they require the insertion of non-invasive probes. For 
this reason the QHR is usually measured in (at least) a cross with four terminals. The 
fundamental reason for quenching in the cross is similar to that discussed here: mixing 
in the Hall voltage probes of the wave functions for electrons emerging from the current 
source and the current drain. In both cases it  is geometry which produces the overlap or 
mixing: the narrowness of the wire in our calculations and, for example, rounded corners 
in a cross. In a wire we find that Coulomb interaction is an important factor in determining 
quenching behaviour. It is expected that this is also true in a cross and the implementation 
of self-consistent calculations in a cross geometry presents a challenging problem. 

The authors wish to thank T Xiang for useful discussion. This work is supported by the 
SERC (Science and Engineering Research Council). 
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